Aylin Rodan

Assistant Professor of Internal Medicine and
Adjunct Assistant Professor of Human Genetics

Aylin Rodan

B.S. Yale University

M.D., Ph.D. University of California San Francisco

Research

References

aylin.rodan@hsc.utah.edu

Aylin Rodan's Lab Page

Aylin Rodan's PubMed Literature Search

Molecular Biology Program

Ion transport, kinase, Drosophila, kidney, osmoregulation, blood pressure, stroke, circadian rhythm, potassium, sodium

Research

Ion transport, the vectorial movement of ions across cell membranes, is a fundamental process that is essential to normal physiology and is perturbed in a variety of disease processes. In the kidney, epithelial ion transport regulates the concentration of ions, such as sodium and potassium, and determines extracellular volume and blood pressure. Kidney dysfunction can lead to perturbations in these regulatory processes, resulting in electrolyte disturbances, hypotension, or hypertension.

My laboratory uses the fruit fly Drosophila melanogaster as a model organism to study ion transport processes relevant to human physiology. Drosophila has a short life cycle, sophisticated genetics, and in many cases single gene representation of mammalian multi-gene families, simplifying analysis of pathways of interest. Our goal is to use to the fly to study ion transporters and channels that are conserved in humans, as well as the molecular mechanisms of regulation of these transporters and channels. One area of focus is the SLC12 family of cation-chloride transporters, such as the potassium-chloride cotransporter and the sodium-potassium-2 chloride cotransporter, and their regulation by WNK and SPAK/OSR1 kinases, which have been implicated in hypertensive disorders in humans. We are also studying inwardly rectifying potassium channels, which have also been implicated in several human disorders. We study these pathways in the fly renal tubule, in which epithelial ion transport is required for ionic and osmotic homeostasis. Additional projects study the WNK-SPAK/OSR1 pathway in stroke and circadian rhythm, as well as the role of this and other pathways in osmoregulation and salt sensitivity. Our goal is to understand these transporters, channels and their regulation in greater mechanistic detail, identify new regulatory factors, and translate these insights into improved understanding of ion transport processes in health and disease.

References

  1. Cheng CJ, Rodan AR and Huang CL. (2017) Emerging targets of diuretic therapy. Clinical Pharmacology & Therapeutics, doi: 10.1002/cpt.754 [epub ahead of print]
  2. Rodan AR and Jenny A. (2017) WNK kinases in development and disease. In: Andreas Jenny, editor, Protein Kinases in Development and Disease, Curr Topics Dev Biol, Burlington: Academic Press, 123: 1-47
  3. Mahajan A, Rodan AR, Le TH, Gaulton KJ, Haessler J, Stilp AM, Kamatani Y, Zhu G, Sofer T, Puri S, Schellinger JN, Chu PL, Cechova S, van Zuydam N; SUMMIT Consortium; BioBank Japan Project, Arnlov J, Flessner MF, Giedraitis V, Heath AC, Kubo M, Larsson A, Lindgren CM, Madden PA, Montgomery GW, Papanicolaou GJ, Reiner AP, Sundström J, Thornton TA, Lind L, Ingelsson E, Cai J, Martin NG, Kooperberg C, Matsuda K, Whitfield JB, Okada Y, Laurie CC, Morris AP, Franceschini N. (2016) Trans-ethnic fine mapping highlights kidney-function genes linked to salt sensitivity. Am J Hum Genet 99: 636-646
  4. Rodan AR (2016) Potassium: friend or foe? Pediatr Nephrol May 18 [Epub ahead of print]
  5. Wu Y, Baum M, Huang C-L, Rodan AR. (2015) Two inwardly-rectifying potassium channels, Irk1 and Irk2, play redundant roles in Drosophila renal tubule function. Am J Physiol Regul Integr Comp Physiol 309: R747-56
  6. Schellinger JN and Rodan AR. (2015) Use of the Ramsay assay to measure fluid secretion and ion flux rates in the Drosophila melanogaster Malpighian tubule. J Vis Exp 105: e53144
  7. Wu Y, Schellinger JN, Huang CL, Rodan AR. (2014) Hypotonicity stimulates potassium flux through the WNK-SPAK/OSR1 kinase cascade and the Ncc69 sodium-potassium-2-chloride cotransporter in the Drosophila renal tubule. J Biol Chem 289: 26131-42
  8. Rodan AR, Baum M, and Huang CL. (2012) The Drosophila NKCC Ncc69 is required for normal renal tubule function. Am J Physiol Cell Physiol 303: C883-C894.

to page top

Last Updated: 6/9/17